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SUMMARY

A method is developed for calculatlng the pressures on aerodynamic
shepes at-very hlgh supersonlc speeds in dense air with the ratio of
specific heats equal to 1. The method is applicable “to any body :of
revolution at zero angle of attack and to any two—dimensional profils.
The ree'u_'l:bs of the present paper are compared with previous work of .
von Kérmén and Epstein on this problem and the differences explalned.

Some aerodynamlic characteristics of several shapes are calculated,
and the 1ift and drag coefficlents are shown to be dependent upon the
thickness ratio, thickness distributlon, and angle of attack.

INTRODUCTION

The possibility of constructing ailrplanes and missiles capsble of
traveling at extremely high supersonic speeds is of ever increasing
Importance. Reference 1, for instance, shows that Mach numbers of the
order of 30 or 40 are necessary for obtalning very long ranges with
rockets. The largest part of such flight paths wlill probably be at very
high altitudes. The aerodynamics of flight at these altitudes has been
treated by Ssnger and Tsien in references 2 and 3. The part of the
£light in dense alr (that is, in & £inid which msy be considered a con—
“tinuum) is also of jm_portance since the surface temperatures and air
loads may reach very high values. The problem of aerodynamic heating
hae been investigated in reference 4. It is the purpose of the present
paper to investigate the alr loads encountéred.

‘Busemann has done much of the original work in developing a theory for
hypersonic flows, however his work on this subject is not generally known
An this country. After the present paper had been completed, Dr. Busemann
made availsble to the authors a copy of his original work (reference 5).
The -method developed in the preeen‘t papsr is in substantiel agreement
with thet refsrence. Von Ka.rman in his Volta Congress address of 1935
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(reference 6), referred to Busemann's theory but in applying the method
imposed physically impossible conditions on the flow. Another theory
has been presented by Epstein (reference 7); however, since he neglected
the pressure relief due to centrifugal force, his method is applicable
only to wedges and cones.
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SYMBOLS

drag coefficient based on unit chord or maximm cross section
1ift coefficlent—based on unit chord

drag

1stence from nose to maximum cross sectio%)

fineness ratio D
Maximim thickness

function

1ift

mess

Mach number

pressure cosfficient

statlc pressure

dynamlc pressure .

radlus of body of revolution

radius of curvature

thickness ratio - -
free—stream air veloclty

coordinate aXes

engle of attack

angle between surface and free—stream directfbp

ratio of specific heats

density
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e ghock-wave angle

¢ angle between surface and x—exis
Subscripts:
K free stream; due to form

a,b ghead of and behind shock. wé.ve
1,2 points of zero pressurs coefflclent
c due to centrifugal force

1 end polnt of any surface element
1 lower surface

L due to 1lift

max maxlmmm

N normal

8 dwé to shock

T tangential; total due to pressure
u upper surface

METHOD OF ANALYSTS

In order to calculaete the pressures on bodies at hypzreonlic spssds
1t is necessary to determine the position of the nose shock wave. First
consider two equations from the theory of shock wavsos. The relation
betwuen the density ratio scross a shock wave and the Mach number normal
to the shock is

Po 7+l .
Pe 24y -1
MN2 .

the relation between density retlo end the shock-wave angle € and
deflection angle B 1is <

fp tan 6

P, tan (6 — B)
§
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If My 1s very large —25 can be meglected and the Following very

useful approximation for high Mach number flow is obtained:

For 7 =1

and for ¥ = 1.k -

.6
p&

Since 6 1s not generally equal to 900 (tan 6 f ), for 7 =1

6=p : (1)
and for 7 = 1.4t and slender bodles

8 = 1.2p (1b)

These relations may bs appllied only to combinations of free-setream
Mach numbers and surface angles which result in very large Mach numbers
normal to the shock (surface). At the limit M = « all surface anglbs
may be considered. ' h

The shock equations have besn dsveloped on the assumption of an
irreversibls adisbatic process (no heat transfer except that occurring
within the shock wave 1tself). Epstein (reference 7) points out that
the compresasion at very high Mach numbers results In extremely high
temperatires which in turn cause large heabt-lossos due to radiation and
conduction. These héat losses 1limlt the temperature rise to a value much
lower then that determined by the adisbatlc law. A botter approximation
to the shock equations at hypersonic speeds may possibly be obtalned by
use of-the assumption that 7 = 1 in the preceding equations. Equa—
tions (1)} show that the resulte are not critically affected by the value
chosen for 7; hence, for simplicity, the calculations in this paper will
be besed on the relation ¥ = 1. '

Equations (1) indicats that at very high supersonic Mach numbers
the shock wave follows the surface. - Since the flow 1s supersgonic the
air ahead of the shock wave is not affected by the body, and hence the

-
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field of disturbed flow esrcund the body iIs limited to a2 thin layer behind
the shock which has been called ths hypersonic boundary laysr. The
veloclty in this layer maey be determined from the shock equations.

From the following figure it is apparent that the mass flow (per
unit area) through the shock wave 1s

Pelay = Pb¥py : (2)

Figure 1.~ Velaocltles neaxr a shock wave.

Since gé--a>o it follows that
b

Therefors U'-bN willl be comsldered negliglble relatlve to Ua'N'

Equating momentum before and afteor the shock in a tangsntial
direction gives

(QaUaN)Ua;in = (p‘bUbN)Ub,_I, (3)
As dstermined from £igure 1, equations (1}, 8_2) , and (3] the tangential
velocity behind the shock (along the surface) is

UbT = UéT = Uy cos 8 = Uy cos B
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AL very high Mach numbers with 7 = 1 the reglon of disturbed flow
is confined to an infinitesimsl layer between the surface and the shock
wave. Slnce the cross section of this disturbed layer ls very small and
the density is very large, the acceleration in the direction of flow is
negligible. Hence the assumption ls made that the spsed of a given mass
of the fluld remains constant along the surface at the value U cos B.
This assumption ie the seme as that made by Busemaenn and von Ka.rman A
sketch of the veloclties over a surface is given in figure 2.

co® e

To o cos B sin By

Uo cos B cos By

Airfoll surface

Flgure 2.— Velocltles over a surface.
The drag of the body is found from the rate of change of the
momentum of the alr in the stream directlon. The air mess per unlt tims

entering an elemental area of shock for a body of revolution at zero
angle of ettack is

2rrpgoUy dr
end the change in velocity in the stream direction from the time the
elemental mass enters the shock a‘b B- until 1t leaves the surface being
considered at By 1is
Uy — Uy cos B cos By

The drag 1s then

r
= 1l : :
D= /o \,Eff_?},rq(qo- - U, ﬁ,os- B cos Bl) dr _ “ (%)

RS
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where cos B 1s a known function of .r, and Py corresponis to the
surface angle at the point ) where the flow diverges from ths surface.
The locetion of ry . will be determined later in the analysis. Equation (&)
differs from that glven by von Kérmén inasmuch as he assumes that the

flow leaves the surface in the free—stream direction (B = 0, ry = rmax)'
This essumption would require surface pressures less then sbsolute zero ,
and is therefore not physically justified. For a two—dimenslonal body

the elemental mass is p U, dy end the drag for ome surface becomss

D= J[vi pOUbE(l -~ cos B coslsl) dy (5)
o .

For a cone B remains constant at the same velue as PBy. Then the
drag of a cone at zero angle of attack simplifigs to

rmax o 1 -l] i
D= 2n jp porsz(l - cosgﬁl) dr L>->)
Yo
= ﬂrmaxgpoUbesingﬁl ' (6)
or B
Cp = 2 sin®By . (1)

Equation (6) is identical with Epstein's result (referemce 7). Since
Epsteln neglected the effect of the pressure drop due to surface
curvature, his method would be expected to be in agreement with the
present work only for straight—side bodles.

The pressure coefflicient behind a shock wave 1s frequently given as

P = 2 sin B éin 2] (8)
cos (6 — B)

Equations (1) and (8) combine to glve the pressure coefficient behind a-
ghock at hypersonic speeds

‘P = 2 5in®B (9)
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A comperison of equations (7) and (9) Indicates that; fTor 7 =1,
two— or thrse—dimensiomal bodiss that have no surface curvature in the
stroam direction have the same pressure on the surface as bshind the
leading shock. When the flow ie curved in the’ stream direction, the
difference in preesure from the shock wave to the surface equals the
centrifugel force due to ths curvature of the flow. The pressure coeffi—
clent behind the shock dépends on the surfacs glope, snpd the surs
rellef-due to curvature depends on the local air mass, velcclty, and
radius of curvebure¥Y The maximm curvature that the flow can have for
a given shock pressure, mass, and velocity occurs when the pressure on
the alrfoil silde of the flow drops to gero. If a pressure gtlll lower
is needed to turn the flow sufficlently to follow the alrfoil or body
surface, it is physically impossible for the flow to follow the surface
end 1t effectively "separates." For the very high dynamic pressurses
encountered at hypersonlc speeds the pressure coefficlent P corresponding
to zero pressure can be consldered ae zero. It follows that the limits
of integration r; and y; of eguations (4) and (5) correspond to the

points whers the surface preassure coefficlents go to zero. Thus, in

order to determine the limits of integration for the drag inbtegral 1t is

necessary to know the local pressure coefficlent. ..
If in equation (5) the subscripts 1 are replaced by 1 where

ths subscript 1 corresponds to the end polnt of any element, the L
expression will give the drag for the part of the body ahead of the

point (xq,y4)

2 [T1
Dy = pgU, (1 —cos B cos By) dy
. o
In terms of drag coefficient based on unlt chord

yi
Cpy =2f (1L —cos B cos By) dy (10)
° . el

The surface pressure coefficient at the point (xi,yy) is then

dCp 4

Py = o ~ o
dyy L _

For x4 £ Xq

. ap Y1 .
- 2a. . e .
Py = 2 sin“By + 2 sin By T, /; cos g ay (11a) .
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Py =0 (11b)

Similerly, for a t‘hree—d.imensional. body of revolution the elementel
drag coefficient based on the maximmm cross pection of the complets body
is - : .

i
Cp; = 1682 f r{1 — cos B cos Bj) ar
o

and on the surface

> 1 %

1= ar,
85'21'1 ﬂl‘i

For xy S Xy -

end for x3 2 Xy

where the fineness ratio F = QI _noge Lo MK AU
imum thickness

The value of ¥y = yy (or ry = 1) 1s determined by equating the

pressure coefficient to zero. This is the propsr value to be used in
eveluating the total drag integral. (Bee equations (4) and (5).) The flow
separates from the surface at the point (x1,y1) and is bounded by a
zero~préssure streamline. Any body within this dero—pressure ragion
contributes no drag.

Tn oquations (1la) and (12a) the first term is ‘the pressure coeffi—
cient behind the shock and the second term is the pressure cosfficient due
to centrifugel force. .- '
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. A good approximation to the surface pressure coefficient for slsndsr .
profiles may be obtained in a simple mammer. Let ¥ =_f(x) be th= shapse
of the body or alrfoil then - -

and . - - ] ) .‘ I AL _‘7--'-_".-:1_' :.l- -. - :—_-.—\.1 “..,.-_._: - _‘-"_,—. _
ay _ en(x) -

The pressure coefficient behind the shock (equation (9)) becomss

a2 —
of' :
l+£=="
If the velocity is not changed appreciaebly by the shock (true only for

slender bodiee or aiffoilé), the pressure drop dus to centrifugal
force ts - - -~ - - - . - 0= palh e

(Ap)c = R — = "'ﬁ_
or _
P.=2%
c R
where the raiius. of cuPveburs: . ... .2 i wo.' o % ey e
. . 3/2 : [ — 0 = - P
R (1+f’9)'___' T

£
The pressure omr the surface-is the shock pféggure piuéithéiéﬂaﬁéejdﬁé_h
to contrifugal force: . e

P = 'PS-_+_,.;_PC U S

wye

2f’2 Effn._._'_... e e e
5+ /2
1+ 8% (1+1£'2)3

|
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Since f'2 is smell compared with 1, the pressure '.c_'o'efficient on &
slender airfoil masy be taken as ' ’

P=o(e'® 4 ££") - ' (13)

For a three—dimensionsl body the alr mass over each surface elemsnt
is : . .

pOUO:trQ Por

2:Uq 2

By similar ressoning the pressure coefficient for slend.er, three—
dimensional bodles may be approximeted as

P =2£12 4 £E" ' (1%)

The 1ift of a body or ailrfoll results from the downward momentum
imparted to the air stream. The same considerations used in determining
the drag from the horizontal momentum apply to the calculation of 1ift
from the verticel momentum. The 1ift for the upper surface of & two—
dimensional alrfoil is then of the form

o . T1 _
L = —pgUp sin By f cos B dy : (15)

o]

where ¥y i_‘s the point where the surface pressure becomes negliglble.
APPLICATION OF THEORY

Lift and drag of a flat pla.te-;— Equatlon (9) can be used as the
besis for celculating the 1ift of stralght—surface alrfolls. The 1ift.
coefficient of a flat plate at a small angle of attack can be written as

Since the suctlon pressures ars negligible in comparison with the
pressure rises

o = 202 = 0 = 2d?

dCq,

de

ko,
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and
Cp = CLa, = 2a,3

Lift and drag of wedge alrfoll,— The 1ift of a single—wedge airfoll
is eagily obtained by the sames method used in the preceding section. TFor
engles of attack o less than the semi-nose angle

Op =Py — By

Cp, = 2[(;3 + -q)é - (8 - a)e'_l

0y = 8B = bta - - (16)
;_?_L = 88 = bt

The drag coefficient of a single-wedge smirfoll at an a.ngle of
attack o -+which 1s less than the semi-nose angle 1s

Cpyp 2[(p + a)3 + (8 — )3

up3 4 12842

This can be broken into a form drag CDo and a drag due to 1ift CDL:

3
Cp, = 483 = 32—

Op, = 1285 : (17)

The combination of squations (16) and (17) gives the f£ollowing expression
for drag due to 1lift for this airfoil:

3 3018
Cpp, =5 012 =g %
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For angles of attack larger than B, the 1ift and drag of the wedge and
flat plate are the same for the sams slopes of the lower surfaces.

Lift, drag, end pressure on a two—dlmensional parabollic—erc airfoll.—
From equation (5) the drag coefficient for a symmetrical two—dimensional
alrfoll of unlt chord may be expressed as

1 :
Cp = h.j[ (1 = cos B cos By) dy
o

-

For the parabolic alrfoll defined by y = itx(l —-%9 where t 1s the
thickness ratio, the drag coeffilcient becomes

4 V1 + £2
= 2tx; (2 —x7) + = |1 — 18)
Cp Xy )+ VpytTog xl)-ér (

The value of Xq for which the pressure coefficlent 1s zero is found
to be

X =1-¢ 1+ +2)Y/3 -1

Substitution of xq 1n equation (18) gives the following egquation for
drag coefficlent:

Cp = zt-%-[(l;té)l/S—l]

or for simplicity of numerical calculations it may be exprsssed in a
series as )
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The pressure coefficlent on the surface of the alrfoll at any point (x1,¥1)
is found from equations (11). Then, for x3 S X7,

V1 + &2

P=2701~—
E!_+t2(l—xi)2

3/2

and for x4 _Z_x,l

or, approximately,

P:te[_fs(l-—xi)e—];l +$E.+6(l+x1)2—15(1—x1)ﬂ F o0

The pressure coefficlent found by the approximate method (equation (13)})
is, for xy S x4,

P =t [3(1 —x)? - 1]

The sgreement of the pressure coefficients found by thess two
methode 1s very good as can be seen in figure 3(a) where the pressure
coefficients on the surface as well as the pressure behind the shock
are given for a parabolic—erc airfoil of thickness ratio equal to 0.10.

The 1ift coefficient (based on a unit chord) is found from
equation (15) to be

e y2 yl .
ESinBEf cosﬁdy+251nﬁlf cos B dy

(o] Q

Cr,

]

*o ¥l
25111[32[ sianx+2511;Blf sin B dx
o} o
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vhere (x1,y;) and (xp,yp) are the points of flow separation on the

upper and lower surfaces, respectively, and B is the angle between ths
airfoil surface and stream direction. Ist @ = 8 —a Ffor the upper
surface end @ = B + o for the lower surface where # is ths angle
between the alxrfoll surface and the x—eaxis., Then for small angles

sin(f~a)mwf—a

For the symmetrical parabolic alrfoil defined by ¥ = tx(l —%) the 11t
coefficisnt based on & unit chord 1s found to de

cp, = [1-.2::23 - 3tx22'(t'+ a) + 2xp(t + m)g]

—Ec2x13 - 3tx12(% - a) + 253t - u.)é] (19)

The pressurse coeffliclents for the upper and lower surfaces ars found
from equations (11). Setting the pressure coefficlents founi from
equations (11) equel to zero pormits the determination of the values
of x; end x,

Py 't2

x12 - 6tx; (b — a) + 2(t — a)?

It
o

3

Py

|
o

3t2x22 - 6txx(t + a) + 2(t + «)? =

The 11ft is then found by substituting these values of x; and Xp
into equation (19). For a <t

o 23 [(t+a)3_(t—m)3J
L~"™9 + t

1
or for t§a§t( -;‘/5
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or for o2t (l'; 3)

Cp = 2 = 36(t + @) + 2(¢ + @)f

The pressure distribution for a temn—percéent~thick parabolic airfoil
1s shown in figure 3(b) for o = 0.05 radian. If o is larger than the
semi-nose angle, the effect of the upper surface on the total 1ift 1is
zero glnce suctlon pressures are neglected.

Drag and pressure on a parabolic body of revolution.— The drag of a
parabolic body of revolution &t zero angle of attack may be detexrmined by
the same method used for the two—dimensional bodlesv -Let the surface be

described by the equation

r = %Cl-éa

where F 18 the fineness ratio of the body The expression for drag
coefficient 1s then

ry
= 16F° J[ (1 — cos B cos By)r ar

(o}
which reduces to
P2 41
art| 3 (1-x)2 (F2 +1) 72
= 2x12(2 = x1)2 4+ )= 1 2 — 1 _»
=z - m 3 [¢2 o @ [A (1 ~x )t
G ——
. F2 -

where x; 1s agein the point of zero pressure coefficient.

The -expression for Cp expanded in a serles is

Cp = -3;3 [1 + 3(1 - %)% - 9(1 - xl)24L +5(1 — x1)5]

- —ALE [3 + (1 - xl)2 +18(1 — xl)h‘ ~60(1 — xl)6 + 35(1 — xl)8]+

24F
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The surface pressure coefficlent found from equation (12) is, for 1 Sx,

~

1 1\3/2
P=2l 4 — 01 ~ >
3x3(2 - x4) 1 o 3/2
¢ F_ +F—§ (l—Ii)
L J
and, for x;.2 X4,
P=20
or as a gerles, for xy S x,
) 1 6 [ PR _ u]
P = TCNCETR) = 1-6(1—-x3) +5(1-x)
+ B—}E [1 +9(1 - x,)% =451 - xi)h + 35(1 — xi)6]+ (20)

By use of the approximation given by equation (14) the pressure coefficient
may elso be expressed, for x; £ %7, as

P = ? (5x12 ~ 10x; + )-I-)—-*: TR L A (21)

The pressure distributlon over a parasbolic body of revolution of fine—
nsss retlo equal to 10 as determined by equation (20) is plotted in
figure 4. The value of the pressure distribution as determined by the
epproximete method (equation (21)) is also plotted in figure 4 together
with the pressure behind the shock. ]
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- CONCLUDING REMARKS

A method for caloculating the serodynamic characteristice of two—
and three-dimensional shapes at hypersonic speeds in dense alr has been .
developed. The results. of ths present paper are in substantial agreement—
with some earlier work of Busemamm but differ from the results of von Kdrmdn
end Epsteln. Von K’azma.n in his epplication of Busemann's method, has
assumed that the flow leaves the surface parallel to the free strea.m
This assumption would require surface pressures lsese than absolute zero.
Bpsteln neglected the pressure relief due to cembtrlfugal force and there--
fore his results apply only to bodies with zero curvature.

The method of the prese:rrb paper has been applied to several simple
shapes and compasred with other calculetions. g .

Langley Memorial Aeronautical Ieboratory
Nationsl Advisory Committee for Aeronsutics
Langley Field, Va., February 5, 1948
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